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Letters

Guided Waves on a Flattened Sheath Helix

RAJENDRA K. ARORA, BHARATHI BHAT, AND
SHEEL ADITYA

Abstract—The “flattened sheath helix” considered iin this letter

consists of a pair of parallel unidirectionally conducting screens con-

ducting in different directions and having different dielectric media in

the sandwiched aad outer regions. Special cases are 1) the normal flat-

tened helix in which the inner medium is a solid dielectric and the outer

medium is air, and 2) the inverted flattened helix with tlhe two media

interchanged. The guiding properties of snch structures arc studied.

INTRODUCTION

One of the most important slow-wave structures is the con-

ducting helix of circular cross section. Its properties have been

extensively studied and are well documented (see, for example,

[1 ]). A related structure in planar configuration was studied by

Arora [2], [3]. This structure, here referred to as a “flattened

helix,” consists of a pair of parallel arrays of thin closely spaced

straight wires conducting in different directions, In this letter, a

generalization of the structure described in [2] and [3] is

‘considered in which the media inside and outside the structure

have different permittivities. Two special cases are of particular

interest and are examined in some detail. First, when the space

between the wire screens is a solid dielectric and the outer medium

is air (normal helix); second, the complementary case with the

air and dielectric regions interchanged (inverted helix).

CHARACTERISTIC EQUATIONS

The geometry of the flattened helix is shown in Fig. 1. The

structure is assumed to extend to infinity in the y and z directions

of the rectangular coordinate system. In the commonly used

“sheath helix” approximation, the top and bottom surfaces are

represented as unidirectionally conducting screens. They conduct

in directions y’ and y“ which make angles a and – a, respectively,

with the y axis. Correspondingly, they are perfectly insulating

in the perpendicular directions z’ and z“.

One may assume that the field has no variaticm in the y

direction. Then, as in [2], the general solution may be decom-

posed into two parts: 1) transverse symmetric (even) and 2)

transverse antisymmetric (odd). The characteristic equation for

even modes is

(k12/uJ + (k22/uJ coth Z& = tan2 ~
(1)

UI + Uz tanh uza

where k12 = co2.uoel, k22 = ro2poe2, and U1 and U2 are the

transverse decay coefficients in the two regions related to the

phase constant ~ in the z direction by

82 = U12 + k12 = U22 + k22. (2)

For decay of the field in the transverse direction, ztl must be real

and positive. The coefficient U2, on the other hand, may be either

real or imaginary; in the latter case, one simply writes U2 = jvz
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Fig. 1. The flattened sheath helix. z: direction of propagation; y’, y“:
directions of conduction of the top. and bottom umdlrect]onally con-
ducting screens, respectively; a: hehx angle.
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Fig. 2. Dispersion characteristics of a normal helix for 8, = 2.56 (poly-
styrene) and a = 30°. Continuous lines represent even modes and dotted
lines odd modes.

in the preceding equations. The characteristic equation for odd

modes is identical to (1) except that the coth and tanh functions

are interchanged.

DISPERSION CHARACTERISTICS

The characteristic equations are solved numerically to yield

the phase constants for the two sets of modes.

A. Normal Helix

For the case of a normal helix (sl = &o, &Z = JWO, kl = ko,

U1 = Uo), Pa is plotted versus koa in Figs. 2 and 3 for .s, = 2.56

(polystyrene) and a = 30° and 60°, respectively. Like modes are

numbered identically in Figs. 2 and 3. It is found tlhat there are

two symmetric modes (modes 1 and 3) and one antisymmetric

mode (mode 2) which propagate down to zero frequency.

Higher order modes of both symmetric and antisymmetric types
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Fig. 3. Dispersion characteristics of a normal helix for e, = 2.56 and
a = 60”. Continuous lines represent even modes and dotted lines odd
modes.

have low-frequency cutoffs given by

koca = ‘n
2(.5, - 1)1/2 ‘

n = 1,2,3, s.s. (3)

At these cutoff frequencies, uOvanishes; correspondingly, ~=

koc, It is observed that thecurves for modes 1 and2 tend to

merge at higher frequencies. These modes correspond to the two

modes which exist when medium 2 also is air [2]. Mode 3,

unlike modes 1 and 2, does not have a counterpart in the air

case and arises because of the dielectric. Similarly, the presence

of higher order modes is also attributed to the dielectric. This

conclusion is substantiated by the fact that the modes of the

dielectric havecutofffrequencies which alsoare given by(3) [4].

B. Inverted Helix

In the case of an inverted helix, one sets &z = eo, &l = 8,8.,

kz = ko, u2 = uo in(l) and(2). Since, from (2), u02 = U12 +

ko2(tr - 1) and UI >0, 8, > 1, U. is always positive real.

Hence there are no modes having trigonometric variation in the

central (air) region. A study of the characteristic equations shows

that there are only two roots, one symmetric and the other

antisymmetric, neither of which has a cutoff frequency. The

phase constants are depicted in Fig. 4 as functions of koa. These

modes are akin to those that exist on apairof unidirectionally

conducting screens in free space [2].

It maybe noted that both in the case of normal and inverted

helices, there is a single transverse-antisymmetric mode that has

no cutoff frequency. By a proper choice of excitation, symmetric

modes may be eliminated [3], and the guide dimensions may be

chosen in such a way that unimodal propagation occurs.

The electromagnetic field in all the modes is, in general,

elliptically polarized both in the longitudinal (XZ) and transverse

(xy) planes. Further, in all the cases, E,, vanishes in the entire

region x ? a and EYtt vanishes in the entire region x s —a.

In the sandwiched region, the electric field vanishes in directions

making angles 0, and O. with the y axis for the symmetric and

antisymmetric cases, respectively, where these angles are given by

e. ( tanh
= tan-l tan a

coth

0.
u2a

)
U2X . (4)

coth tanh
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Fig. 4. Dispersion characteristics of an inverted helix for .s, = 2.56.
Continuous lines represent even modes and dotted lines odd modes.

In the plane x = O, 0S = rc/2, and 00 = O. Thus even and odd

modes may be distinguished by the manner in which the direction

of vanishing electric field component turns while passing from

the top to the bottom screen.

CONCLUSION

A modal analysis has been carried out for the normal and

inverted flattened sheath helices. It is shown that by proper

geometry and excitation scheme, propagation in a single mode

can be assured. The slow wave and polarization properties

suggest useful applications for such planar structures. For

example, the polarization characteristics may be utilized to

fabricate nonreciprocal ferrite components.
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Influence of Spatial Dispersion of the Shield Transfer

Impedance of a Braided Coaxial Cable

J. R. WAIT AND D. A. HILL

Abstract—The effect of the dependence of the braid transfer imped-

ance on the propagation constant is discussed for a coaxial cable located

in a circular tunnel.

In recent papers [1], [2] in this TRANSACTIONS, we have

presented attenuation calculations for a braided coaxial cable

located within a circular tunnel bounded by a homogeneous
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