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Letters.

Guided Waves on a Flattened Sheath Helix

RAJENDRA K. ARORA, BHARATHI BHAT, anD
SHEEL ADITYA

Abstract—The “flattened sheath helix” considered in this letter
consists of a pair of parallel unidirectionally conducting screens con-
ducting in different directions and having different dielectric media in
the sandwiched and outer regions. Special cases are 1) the normal flat-
tened helix in which the inner medium is a solid dielectric and the outer
medium is air, and 2) the inverted flattened helix with the two media
interchanged. The guiding properties of such structures are studied.

INTRODUCTION

One of the most important slow-wave structures is the con-
ducting helix of circular cross section. Its properties have been
extensively studied and are well documented (see, for example,
[1]). A related structure in planar configuration was studied by
Arora [2], [3]. This structure, here referred to as a “flattened
helix,” consists of a pair of parallel arrays of thin closely spaced
straight wires conducting in different directions. In this letter, a
generalization of the structure described in [2] and [3] is

“considered in which the media inside and outside the structure
have different permittivities. Two special cases are of particular
interest and are examined in some detail. First, when the space
between the wire screens is a solid dielectric and the outer medium
is air (normal helix); second, the complementary case with the
air and dielectric regions interchanged (inverted helix).

CHARACTERISTIC EQUATIONS

The geometry of the flattened helix is shown in Fig. 1. The
structure is assumed to extend to infinity in the y and z directions
of the rectangular coordinate system. In the commonly used
“sheath helix” approximation, the top and bottom surfaces are
represented as unidirectionally conducting screens, They conduct
in directions y’ and y” which make angles « and — «, respectively,
with the y axis. Correspondingly, they are perfectly insulating
in the perpendicular directions z* and z”.

One may assume that the field has no variation in the y
direction. Then, as in [2], the general solution may be decom-
posed into two parts: 1) transverse symmetric (even) and 2)
transverse antisymmetric (odd). The characteristic equation for
even modes is

(ky?uy) + (k;%[u;) coth ua

tan? « 6)
u, + u, tanh uya

where k2 = 0?uge;, k22 = w’uges, and u, and u, are the
transverse decay coefficients in the two regions related to the
phase constant §in the z direction by

ﬁZ = u12 + k12 = u22 + k22. (2)

For decay of the field in the transverse direction, #; must be real
and positive. The coefficient u,, on the other hand, may be either
real or imaginary; in the latter case, one simply writes u, = jv,
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Fig. 1. The flattened sheath helix. z: direction of propagation; y’, ¥”:

directions of conduction of the top and bottom unidirectionally con-
ducting screens, respectively; a«: helix angle.
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Fig. 2. Dispersion characteristics of a normal helix for ¢, = 2.56 (poly-
styrene) and « = 30°. Continuous lines represent even modes and dotted
lines odd modes. .

in the preceding equations. The characteristic equation for odd
modes is identical to (1) except that the coth and tanh functions
are interchanged.

DISPERSION CHARACTERISTICS

The characteristic equations are solved numerically to yield
the phase constants for the two sets of modes.

A. Normal Helix

For the case of a normal helix (¢; = &, & = &£, k1 = ko,
u; = ug), fais plotted versus koa in Figs. 2 and 3 for g, = 2.56
(polystyrene) and « = 30° and 60°, respectively. Like modes are
numbered identically in Figs. 2 and 3. It is found that there are
two symmetric modes (modes 1 and 3) and one antisymmetric
mode (mode 2) which propagate down to zero frequency.
Higher order modes of both symmetric and antisymmetric types
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Fig. 3. Dlspersmn characteristics of a normal helix for & = 2.56 and
o _d 60°, Continuous lines represent even modes and dotted lines odd
modes.

have low-frequency cutoffs given by

nn

koca = 2——————(8r — 1)1/2’

n=123,.--. 3)
At these cutoff frequencies, u#, vanishes; correspondingly, 8 =
koc. It is observed that the curves for modes 1 and 2 tend to
merge at higher frequencies. These modes correspond to the two
modes which exist when medium 2 also is air [2]. Mode 3,
unlike modes 1 and 2, does not have a counterpart in the air
case and arises because of the dielectric. Similarly, the presence
of higher order modes is also attributed to the dielectric. This
conclusion is substantiated by the fact that the modes of the
dielectric have cutoff frequencies which also are given by (3) [4].

B. Inverted Helix

In the case of an inverted helix, one sets &, = ¢y, &; = &8¢,

k, = ko, u, = uy in (1) and (2). Since, from (2), #y?> = u;% +
koX(e, — 1) and u; > 0, ¢ > 1, u, is always positive real.
Hence there are no modes having trigonometric variation in the
central (air) region. A study of the characteristic equations shows
that there are only two roots, one symmetric and the other
antisymmetric, neither of which has a cutoff frequency. The
phase constants are depicted in Fig. 4 as functions of ky,a. These
modes are akin to those that exist on a pair of unidirectionally
conducting screens in free space [2].

It may be noted that both in the case of normal and inverted
helices, there is a single transverse-antisymmetric mode that has
no cutoff frequency. By a proper choice of excitation, symmetric
modes may be eliminated [3], and the guide dimensions may be
chosen in such a way that unimodal propagation occurs.

The electromagnetic field in all the modes is, in general,
elliptically polarized both in the longitudinal (xz) and transverse
(xy) planes. Further, in all the cases, E,. vanishes in the entire
region x = @ and E,. vanishes in the entire region x < —a.
In the sandwiched region, the electric field vanishes in directions
making angles 6 and 8, with the y axis for the symmetric and
antisymmetric cases, respectively, where these angles are given by

uzx) . @

coth

0,
° = tan~! {tan « Ua
0, tanh

4.0
x=60
3.0
| 2
1]
@
1.0
| 1
0 1.0 20 30

Kgad——»

Fig. 4. Dispersion characteristics of an inverted helix for & = 2.56.
Continuous lines represent even modes and dotted lines odd modes.

In the plane x = 0, 8, = #/2, and 8, = 0. Thus even and odd
modes may be distinguished by the manner in which the direction
of vanishing electric field component turns while passing from
the top to the bottom screen.

CONCLUSION

A modal analysis has been carried out for the normal and
inverted flattened sheath helices. It is shown that by proper
geometry and excitation scheme, propagation in a single mode
can be assured. The slow wave and polarization properties
suggest useful applications for such planar structures. For
example, the polarization characteristics may be utilized to
fabricate nonreciprocal ferrite components.
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Influence of Spatial Dispersion of the Shield Transfer
Impedance of a Braided Coaxial Cable

J. R. WAIT anp D. A, HILL

Abstract—The effect of the dependence of the braid transfer imped-
ance on the propagation constant is discussed for a coaxial cable located
in a circular tunnel.

In recent papers [1], [2] in this TRANSACTIONS, we have
presented attenuation calculations for a braided coaxial cable
located within a circular tunnel bounded by a homogeneous
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